Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.17.468943

ABSTRACT

SARS-CoV-2 papain-like protease (PLpro) covers multiple functions. Beside the cysteine-protease activity, PLpro has the additional and vital function of removing ubiquitin and ISG15 (Interferon-stimulated gene 15) from host-cell proteins to aid coronaviruses in evading the hosts innate immune responses. We established a high-throughput X-ray screening to identify inhibitors by elucidating the native PLpro structure refined to 1.42 Angstroms and performing co-crystallization utilizing a diverse library of selected natural compounds. We identified three phenolic compounds as potential inhibitors. Crystal structures of PLpro inhibitor complexes, obtained to resolutions between 1.7-1.9 Angstroms, show that all three compounds bind at the ISG15/Ub-S2 allosteric binding site, preventing the essential ISG15-PLpro molecular interactions. All compounds demonstrate clear inhibition in a deISGylation assay, two exhibit distinct antiviral activity and one inhibited a cytopathic effect in a non-cytotoxic concentration range. These results highlight the druggability of the rarely explored ISG15/Ub-S2 PLpro allosteric binding site to identify new and effective antiviral compounds. Importantly, in the context of increasing PLpro mutations in the evolving new variants of SARS-CoV-2, the natural compounds we identified may also reinstate the antiviral immune response processes of the host that are down-regulated in COVID-19 infections.


Subject(s)
COVID-19
2.
Sebastian Guenther; Patrick Y A Reinke; Yaiza Fernandez-Garcia; Julia Lieske; Thomas J Lane; Helen Ginn; Faisal Koua; Christiane Ehrt; Wiebke Ewert; Dominik Oberthuer; Oleksandr Yefanov; Susanne Meier; Kristina Lorenzen; Boris Krichel; Janine Kopicki; Luca Gelisio; Wolfgang Brehm; Ilona Dunkel; Brandon Seychell; Henry Gieseler; Brenna Norton-Baker; Beatriz Escudero-Perez; Martin Domaracky; Sofiane Saouane; Aleksandra Tolstikova; Thomas White; Anna Haenle; Michael Groessler; Holger Fleckenstein; Fabian Trost; Marina Galchenkova; Yaroslav Gevorkov; Chufeng Li; Salah Awel; Ariana Peck; Miriam Barthelmess; Frank Schluenzen; Xavier P Lourdu; Nadine Werner; Hina Andaleeb; Najeeb Ullah; Sven Falke; Vasundara Srinivasan; Bruno Franca; Martin Schwinzer; Hevila Brognaro; Cromarte Rogers; Diogo Melo; John J Doyle; Juraj Knoska; Gisel E Pena Murillo; Aida Rahmani Mashhour; Filip Guicking; Vincent Hennicke; Pontus Fischer; Johanna Hakanpaeae; Jan Meyer; Philip Gribbon; Bernhard Ellinger; Maria Kuzikov; Markus Wolf; Andrea Rosario Beccari; Gleb Borenkov; David von Stetten; Guillaume Pompidor; Isabel Bento; Saravanan Panneerselvam; Ivars Karpics; Thomas R Schneider; Maria Garcia Alai; Stephan Niebling; Christian Guenther; Christina Schmidt; Robin Schubert; Huijong Han; Juliane Boger; Diana Monteiro; Linlin Zhang; Xinyuanyuan Sun; Jonathan Pletzer-Zelgert; Jan Wollenhaupt; Christian Feiler; Manfred S. Weiss; Eike C. Schulz; Pedram Mehrabi; Katarina Karnicar; Aleksandra Usenik; Jure Loboda; Henning Tidow; Ashwin Chari; Rolf Hilgenfeld; Charlotte Uetrecht; Russell Cox; Andrea Zaliani; Tobias Beck; Matthias Rarey; Stephan Guenther; Dusan Turk; Winfried Hinrichs; Henry N Chapman; Arwen R Pearson; Christian Betzel; Alke Meents.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.12.378422

ABSTRACT

The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous health problems and economical challenges for mankind. To date, no effective drug is available to directly treat the disease and prevent virus spreading. In a search for a drug against COVID-19, we have performed a massive X-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for the virus replication and, thus, a potent drug target. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds binding to Mpro. In subsequent cell-based viral reduction assays, one peptidomimetic and five non-peptidic compounds showed antiviral activity at non-toxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.02.043554

ABSTRACT

Here we present the crystal structure of SARS-CoV-2 main protease (Mpro) covalently bound to 2-methyl-1-tetralone. This complex was obtained by co-crystallization of Mpro with HEAT (2-(((4-hydroxyphenethyl)amino)methyl)-3,4-dihydronaphthalen-1(2H)-one) in the framework of a large X-ray crystallographic screening project of Mpro against a drug repurposing library, consisting of 5632 approved drugs or compounds in clinical phase trials. Further investigations showed that HEAT is cleaved by Mpro in an E1cB-like reaction mechanism into 2-methylene-1-tetralone and tyramine. The catalytic Cys145 subsequently binds covalently in a Michael addition to the methylene carbon atom of 2-methylene-1-tetralone. According to this postulated model HEAT is acting in a pro-drug-like fashion. It is metabolized by Mpro, followed by covalent binding of one metabolite to the active site. The structure of the covalent adduct elucidated in this study opens up a new path for developing non-peptidic inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL